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Abstract
We obtain an exact asymptotic expression for the two-point fermion correlation
functions in the massive Thirring model (MTM) and show that, for β2 = 8π ,
they reproduce the exactly known corresponding functions of the massless
theory, explicitly confirming the irrelevance of the mass term at this point. This
result is obtained by using the Coulomb gas representation of the fermionic
MTM correlators in the bipolar coordinate system.

PACS numbers: 11.10.Jj, 11.10.Kk, 11.10.Lm

1. Introduction

In a recent paper [1], we have presented the first exact evaluation of the Kosterlitz–Thouless
(KT) critical exponent appearing in the asymptotic large distance behaviour of the two-point
spin correlation function of the XY-model (which is the name given for the system consisting
of planar spins interacting through an exchange coupling in a lattice). This has been done
by using its connection to the sine-Gordon (SG) theory [2, 3] and the two-dimensional (2D)
neutral Coulomb gas (CG) [4] expressed in bipolar coordinates, which allow us to obtain a
convenient representation for the relevant correlator.

In this work we employ the same methodology established in [1] to compute the two-
point fermion correlation functions of the MTM, which, as is well known, is also connected
to the SG theory [5]. The MTM and the associated SG theory, indeed, are some of the best-
studied quantum field theories. Numerous nontrivial exact results have been obtained for this
fascinating system. Among them, we may list: the demonstration of the identity between the
vacuum functionals of the MTM and SG theory [5]; the identification of the fermionic MTM
field as the soliton operator of the SG theory [5, 6]; the explicit obtainment of an expression
for this field operator in terms of the SG field (bosonization) [6]; the exact S-matrix and
spectrum of bound-states [7]; recent investigations on new aspects of the relationship between
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the 2D Thirring model and the SG theory [8–10]; the determination of the free energy and the
specific heat of the system by means of the thermodynamic Bethe ansatz [11]; and, finally,
the derivation of exact form factors for the soliton operators and other fields [12–16] and
its consequent use for the computation of density correlation functions [17]. Several exact
results concerning the equilibrium statistical mechanics of the 2D classical CG have also been
obtained [18]. Among these, we mention the full thermodynamics for 0 � β2 < 4π , in the
case of point particles [19] and for 4π � β2 < 6π , in the case of extensive ones [20]. Charge
and particle correlators have been obtained in the low temperature (β2 > 8π) phase [21].

Renormalization group analysis of the SG/CG system has also produced numerous
interesting results. It has been shown, in particular, that the mass term of the MTM or,
equivalently, the cosine interaction of the SG theory, becomes irrelevant for β2 � 8π [22, 23].
The continuous phase transition of Kosterlitz and Thouless [24] was identified in the associated
XY-model of spins at the temperature corresponding to this value of the SG coupling β and
the associated critical exponent was evaluated by using scaling arguments and the irrelevance
of the corresponding interaction [2, 22, 25, 26].

Despite this huge mass of important results, however, the fermion field correlation
functions of the MTM are not known exactly, except for the special point β2 = 4π [27],
where the MTM becomes a free massive theory. It is the purpose of this work to obtain an
exact large distance asymptotic expression for the fermion correlators of the MTM and to
show that for β2 = 8π (KT critical point) this asymptotic behaviour reproduces the exactly
known fermion correlation functions of the massless Thirring model [28], thus confirming
explicitly the irrelevance of the mass term of the MTM at this point. In order to do that, we
make use of the CG representation of the SG system and the bosonized form of the MTM
fields, which in the CG framework become associated with external charges and strings of
electric dipoles interacting with the charges of the gas. The exact large distance asymptotic
form of the correlators is then obtained by the use of a special coordinate system, namely the
bipolar coordinates.

2. The MTM and the SG/CG system

In this section, we are going to review some basic features of the connection of the MTM with
the SG theory and with the 2D neutral CG. We then finish by presenting a representation of the
fermionic MTM correlators in the framework of the classical CG, which will be our starting
point for their evaluation at β2 = 8π .

The MTM is described by the Lagrangian

L = iψ̄ �∂ψ − M0ψ̄ψ − g

2
(ψ̄γµψ)(ψ̄γ µψ), (1)

where ψ is a two-component Dirac fermion field in (1+1)D. It is well known that it can be
mapped into the SG theory of an scalar field [5] whose dynamics is determined by

L = 1
2∂µφ∂µφ + 2α0 cos βφ, (2)

where the couplings in the two models are related as

g = π

(
4π

β2
− 1

)
, M0ψ̄ψ = −2α0 cos βφ. (3)

Under this mapping, the two components of the fermion field may be expressed in terms of
the SG field as

ψ1(�x) = σ(�x)µ(�x), ψ2(�x) = σ †(�x)µ(�x), (4)
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where σ(�x) and µ(�x) are, respectively, order and disorder fields, satisfying a dual algebra,
which can be introduced in the SG theory [30]. These are given by

σ(x, τ ) = exp

{
i

β

2
φ(x, τ )

}
, (5)

µ(x, τ) = exp

{
i

2π

β

∫ x

−∞
dz φ̇(z, τ )

}
. (6)

Equation (4) coincides with the bosonized expression for the fermion field, first obtained
in [6].

In what follows, we are going to perform an expansion in α0. In order to control the
infrared (IR) divergences inherent to the expansion around a massless theory in 2D, we follow
[5] and modify (2) by adding a regulator mass term

Lreg = 1
2µ2

0φ
2 (7)

and multiplying the interaction term (2α0 cos βφ) by a function f (�z) of compact support. At
the end, of course, we must take the limits µ0 → 0 and f (�z) → 1.

The Euclidean vacuum functional of the SG theory may be written as the grand-partition
function of a classical neutral 2D CG, namely [4, 22]

Z = lim
ε→0

lim
f (z)→1

lim
µ0→0

∞∑
n=0

α2n

(n!)2

∫ 2n∏
i=1

(d2zi f (�zi))

× exp


 β2

8π

2n∑
i �=j=1

λiλj ln
[
µ2

0(|�zi − �zj |2 + |ε|2)]

 , (8)

where λi = 1 for 1 � i � n and λi = −1 for n + 1 � i � 2n and ε is an ultraviolet
(UV) regulator, introduced in the 2D Coulomb potential, which is needed in the case of point
particles or, equivalently, of a local field theory. The renormalized coupling α is related to the
one in (2) by

α = α0
(
µ2

0|ε|2
) β2

8π . (9)

We must emphasize that, in order to obtain (8), use was made of the UV- and IR-regulated
Green’s function of the free scalar theory, namely [22]

G(�r;µ0) = 1

2π
K0

[
µ0(|�r|2 + |ε|2) 1

2
] µ0|�r|�1∼ − 1

4π
ln

[
µ2

0(|�r|2 + |ε|2)], (10)

where K0 is a Bessel function.
Note that, due to neutrality, the explicit dependence on µ0 disappears from the summand

in (8).
In the CG language, the couplings α and β are related, respectively, to the CG fugacity and

temperature as α = µCG and β2 = 2π
kBTCG

. At the Kosterlitz–Thouless point TKT, corresponding

to β2 = 8π , the system undergoes a phase transition from a metallic (fluid) phase composed
of charged particles, for β2 < 8π , to an insulating (dielectric) phase, composed of neutral
dipoles, for β2 > 8π . In the region 0 < β2 < 4π , the singularities occurring in (8) are all
integrable and no UV regularization is needed for Green’s function. The CG of point charges
is thermodynamically stable. For 4π � β2 < 8π , however, the singularities are no longer
integrable and the system becomes unstable. Use of the UV-regularized Green’s function
introduced above becomes therefore necessary, in order to prevent thermodynamic collapse.



970 L Mondaini and E C Marino

Using the CG description we can write the four components of the two-point fermion
correlation function as

〈
ψ1(2)(�x)ψ

†
1(2)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

+(−)i exp [+(−)i arg (�x − �y)]

Z

[ |ε|
| �x − �y|

]( 2π

β2 + β2

8π
)

×
∞∑

n=0

α2n

(n!)2

∫ 2n∏
i=1

(d2zi f (�zi)) exp


 β2

8π

2n∑
i �=j=1

λiλj ln
[
µ2

0(|�zi − �zj |2 + |ε|2)]

+ (−)
β2

8π

2n∑
i=1

λi ln
[|�zi − x|2 + |ε|2]

[|�zi − y|2 + |ε|2]
+ i

2n∑
i=1

λi[arg(�zi − �y) − arg(�zi − �x)]



(11)

and〈
ψ1(2)(�x)ψ

†
2(1)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

−(+)i

Z
[µ0|ε|](

2π

β2 + β2

8π
)
[µ0| �x − �y|]−( 2π

β2 − β2

8π
)

×
∞∑

n=0

α(2n+1)

n!(n + 1)!

∫ 2n+1∏
i=1

(d2zi f (�zi))

× exp


 β2

8π

2n+1∑
i �=j=1

λiλj ln
[
µ2

0(|�zi − �zj |2 + |ε|2)]

+ (−)
β2

8π

2n+1∑
i=1

λi ln
{[

µ2
0(|�zi − �x|2 + |ε|2)][µ2

0(|�zi − �y|2 + |ε|2)]}

+ i
2n+1∑
i=1

λi[arg(�zi − �y) − arg(�zi − �x)]


 . (12)

In (11), we have λi = +1 for 1 � i � n and λi = −1 for n + 1 � i � 2n. In (12), on the
other hand, we have λi = +1 for 1 � i � n and λi = −1 for n + 1 � i � 2n + 1 for

〈
ψ1ψ

†
2

〉
.

Conversely, for
〈
ψ2ψ

†
1

〉
, we have λi = −1 for 1 � i � n and λi = +1 for n + 1 � i � 2n + 1.

Note that the order fields introduce additional external charges of half magnitude in the gas.
The disorder fields, on the other hand, introduce strings of electric dipoles connecting �x and �y
and whose interaction potential with a charge at �z is proportional to (arg(�z − �y) − arg(�z − �x))

[30]. As a consequence, in the case of the diagonal components of the fermionic correlators,
we have two external charges with half of the magnitude of the gas charges and opposite
signs, located at �x and �y. The CG, therefore, remains neutral. In the case of the off-diagonal
components, however, the fermion fields introduce two external charges, also having half
magnitude and with the same sign at �x and �y. In order to achieve global neutrality, therefore,
the CG must be no longer neutral, having an extra positive charge in the case of

〈
ψ2ψ

†
1

〉
and

an extra negative charge in the case of
〈
ψ1ψ

†
2

〉
. Global neutrality is a necessary condition for

the existence of the µ0 → 0 limit, since in this case the µ0-factors are completely cancelled
in (11) and (12).

3. Bipolar coordinates and the fermion correlators

In this section we make use of bipolar coordinates in order to obtain a representation for
the fermion correlators that will prove to be extremely useful. It allows, in particular, the
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obtainment of a series in | �x − �y| for these correlators, valid for �x �= �y, out of which we can
derive an exact asymptotic expression at β2 = 8π .

Given the position vector �r in the plane and two points (poles) at �x and �y, the bipolar
coordinates (ξ, η) are defined as [31]

ξ = arg(�r − �y) − arg(�r − �x), η = ln
|�r − �x|
|�r − �y| , (13)

with 0 � ξ � 2π and −∞ < η < ∞. In terms of these coordinates, the position vector is
given by

�r = |�x − �y|
2[cosh η − cos ξ ]

(sinh η, sin ξ) (14)

and the volume element reads

d2z = |�x − �y|2
4[cosh η − cos ξ ]2

dξ dη. (15)

Rewriting expressions (11) and (12), for �x �= �y, in terms of bipolar coordinates, we get

〈
ψ1(2)(�x)ψ

†
1(2)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

+(−)i exp[+(−)i arg(�x − �y)]

Z

[ |ε|
| �x − �y|

]( 2π

β2 + β2

8π
)

×
∞∑

n=0

α2n

(n!)2

∫ 2π

0,V (ε)

∫ +∞

−∞,V (ε)

2n∏
i=1

(dξi dηif (ξi, ηi))

× |�x − �y|4n

4[cosh ηi − cos ξi]2
exp


 β2

8π

2n∑
i �=j=1

λiλj

× ln

{
[µ0| �x − �y|]2

[(
sinh ηi

2[cosh ηi − cos ξi]
− sinh ηj

2[cosh ηj − cos ξj ]

)2

+

(
sin ξi

2[cosh ηi − cos ξi]
− sin ξj

2[cosh ηj − cos ξj ]

)2
]}

+ (−)
β2

4π

2n∑
i=1

λiηi + i
2n∑
i=1

λiξi


 , (16)

and〈
ψ1(2)(�x)ψ

†
2(1)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

−(+)i

Z
[µ0|ε|](

2π

β2 + β2

8π
)
[µ0|�x − �y|]−( 2π

β2 − β2

8π
)

×
∞∑

n=0

α(2n+1)

n!(n + 1)!

∫ 2π

0,V (ε)

∫ +∞

−∞,V (ε)

2n+1∏
i=1

(dξi dηif (ξi, ηi))

× |�x − �y|(4n+2)

4[cosh ηi − cos ξi]2
exp


 β2

8π

2n+1∑
i �=j=1

λiλj

× ln

{
[µ0|�x − �y|]2

[(
sinh ηi

2[cosh ηi − cos ξi]
− sinh ηj

2[cosh ηj − cos ξj ]

)2

+

(
sin ξi

2[cosh ηi − cos ξi]
− sin ξj

2[cosh ηj − cos ξj ]

)2
]}
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+ (−)
β2

8π

2n+1∑
i=1

λi ln

{
[µ0|�x − �y|]4

[(
sinh ηi

2[cosh ηi − cos ξi]
+

1

2

)2

+

(
sin ξi

2[cosh ηi − cos ξi]

)2
] [(

sinh ηi

2[cosh ηi − cos ξi]
− 1

2

)2

+

(
sin ξi

2[cosh ηi − cos ξi]

)2
]}

+ i
2n+1∑
i=1

λiξi


 .

(17)

Note that in the two previous expressions, we modified the UV regulating method, by
redefining the integration region as V (ε), in such a way that the integrations must respect the
condition |�zi − �zj | > ε. In terms of the ξi, ηi integrals, this implies the following restriction
for the expressions between round brackets in (16) and (17), which we call, respectively, αij

and βij :

[
α2

ij + β2
ij

]
>

|ε|2
|�x − �y|2 . (18)

It is easy to see that the |�x − �y|-factors decouple from the integrals in (16) and (17). We
can also see that, for finite |�x − �y|, the µ0-factors completely cancel out from the fermion
correlators, as we observed at the end of the previous section.

A simple combinatoric analysis, considering the neutrality of the system, shows that for

the diagonal components of the correlation functions, the |�x − �y| β2

2π -factors appear n(n − 1)

times in the numerator and n2 times in the denominator. Adding the 4n contribution coming
from the scale factors of the volume elements, we obtain

〈
ψ1(2)(�x)ψ

†
1(2)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

+(−)i exp
[
+(−)i arg

(�x − �y)]
Z

[ |ε|
|�x − �y|

]( 2π

β2 + β2

8π
)

×
∞∑

n=0

C+(−)
n

(|�x − �y|)|�x − �y|(2− β2

4π
)2n, (19)

where the C+(−)
n coefficients are given by each term of the summand in (16) after the removal

of the |�x − �y|-factors.
Conversely, for the off-diagonal components, a similar combinatoric analysis indicates

that the |�x − �y| β2

2π -factors appear n(n + 1) times in the numerator and (n + 1)2 times in the
denominator. Considering the (4n + 2) scale factors of the volume elements in (17), we get

〈
ψ1(2)(�x)ψ

†
2(1)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

−(+)i

Z
[µ0|ε|](

2π

β2 + β2

8π
)
[µ0|�x − �y|]−( 2π

β2 − β2

8π
)

×
∞∑

n=0

F +(−)
n

(|�x − �y|)|�x − �y|[(2− β2

4π
)2n− β2

2π
+2], (20)

where the F +(−)
n coefficients are given by each term of the summand in (17) after the removal

of the |�x − �y|-factors.
Note that the coefficients C+(−)

n and F +(−)
n in (19) and (20) depend on |�x − �y| through the

restriction on the integration region given by (18).
In the limit α → 0, our expressions for the fermion correlation functions of the MTM

reproduce the exact solution for the Euclidean correlators of the massless Thirring model. In
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the limit β → 0, the mass operator becomes trivial and, again, we must take α → 0, thereby
recovering the exact correlation functions of the massless Thirring model.

It is also interesting to note that our expressions for the two-point fermion correlators of
the MTM, (19) and (20), reproduce, in the case β2 = 4π (free-fermion point) the free massive
fermion correlation function

〈ψ(�x)ψ †(�y)〉0 = M0

(
ζK1(M0|�x − �y|) K0(M0|�x − �y|)
K0(M0|�x − �y|) ζ ∗K1(M0|�x − �y|)

)
, (21)

where ζ = i ei arg(�x−�y) and M0 is the free fermion mass. Indeed, for β2 = 4π the series
appearing in (19) and (20), respectively, are precisely the ones that occur in the definition
of the Bessel functions K1 and K0 [29]. Equating the coefficients we obtain the following
expressions for C+(−)

n and F +(−)
n (C+(−)

0 ≡ 1 for all values of β):

C
+(−)
n+1 (|�x − �y|) = M0

(2n+2)

2(2n+1)n!(n + 1)!

[
ln

(
M0|�x − �y|

2

)
− 1

2
ψ(n + 1) − 1

2
ψ(n + 2)

]
(22)

and

F +(−)
n (|�x − �y|) = +(−)iM0

2n

22n(n!)2

[
ψ(n + 1) − ln

(
M0|�x − �y|

2

)]
, (23)

where ψ(x) is the Euler function. In order to obtain (22) and (23), we used the fact that (19)
and (20) are independent of µ0. We then replaced µ0 for the physical mass M0 and eliminated
the |ε|- and Z-factors by renormalizing the fermion fields.

From the exact expression (19), we clearly see a definite change in the large distance
behaviour of the diagonal correlation functions at β2 = 8π . This indicates that for β2 > 8π ,
the asymptotic large distance behaviour is determined by the corresponding massless correlator.
We are going to see, in the next section, that for these values of the coupling constant β, also
the off-diagonal components of the correlator at large distance, correspond to the respective
massless correlators, namely, they vanish identically.

4. Asymptotic behaviour of fermion correlators

4.1. Diagonal components

Let us study in this subsection the large distance limit of the diagonal, chirality conserving,
components of the fermion correlation function at β2 = 8π . From (19), we can write〈
ψ1(2)(�x)ψ

†
1(2)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

+(−)i exp[+(−)i arg(�x − �y)]

×
[ |ε|
|�x − �y|

] 5
4

K+(−) (|�x − �y|) , (24)

where

K+(−) (|�x − �y|) = Z−1
∞∑

n=0

C+(−)
n (|�x − �y|) (25)

evaluated at β2 = 8π .
Going back to the original coordinate system and defining the symbols

[xi, yj ] ≡ µ4
0[|�xi − �yj |2 + |ε|2]2, (26)
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we may express K+(−) (|�x − �y|) in the form

K+(−)(|�x − �y|) = Z−1
∞∑

n=0

α2n

(n!)2

∫ n∏
i=1

(d2xif (�xi))

n∏
i=1

(d2yif (�yi))

∏n
i<j

[xi ,xj ]
|�x−�y|4

∏n
i<j

[yi ,yj ]
|�x−�y|4

|�x − �y|4n
∏n

i,j

[xi ,yj ]
|�x−�y|4

×
(∏n

i [xi, x]
∏n

i [yi, y]∏n
i [xi, y]

∏n
i [yi, x]

)+(−) 1
2

exp

{
i

n∑
i=1

[arg(�xi − �y) − arg(�xi − �x)]

− i
n∑

i=1

[arg(�yi − �y) − arg(�yi − �x)]

}
, (27)

where we went back to the original UV regulating method and associated the positive charges
with �xi and the negative ones with �yi . Observe that the |�x − �y|-factors completely cancel out
in (27) and, therefore, may be removed.

Let us now study the asymptotic large distance behaviour of (24). In order to do that we
must rewrite the expression between round brackets, as well as the phases, in (27) in the form
that we would have obtained if we had used the fully regulated form of Green’s function, given
in (10), since in this limit the last part of that expression is no longer valid. Thus, we should
write the expression between round brackets as

exp

{
−(+)2

[
n∑

i=1

(K0[µ0(|�xi − �x|2 + |ε|2) 1
2 ] − K0[µ0(|�xi − �y|2 + |ε|2) 1

2 ])

−
n∑

i=1

(K0[µ0(|�yi − �x|2 + |ε|2) 1
2 ] − K0[µ0(|�yi − �y|2 + |ε|2) 1

2 ])

]}
, (28)

whereas, for the phases, we get∫ 2�y−�x

�y
dξµεµν∂(ξ)

ν

(
n∑

i=1

K0
[
µ0(|�ξ − �xi + (�x − �y)|2 + |ε|2) 1

2
]

−
n∑

i=1

K0
[
µ0(|�ξ − �yi + (�x − �y)|2 + |ε|2) 1

2
])

, (29)

where we have performed the shift �ξ → �ξ − (�x − �y) in the integration variable. Note that the
former expression for the phases may be obtained from (29), for µ0|�r| � 1, by using (10) and
the Cauchy–Riemann equation for the logarithm function [30].

It is easy to see that, for |�x − �y| → ∞, we have

[xi, x]
|�x−�y|→∞∼ [xi, y], [yi, x]

|�x−�y|→∞∼ [yi, y] (30)

and therefore, the expression (28) tends to 1. Using the fact that K0(x)
x→∞−→ 0, we may also

see that the phases (29) vanish in the large distance limit. Consequently, considering that the
remaining terms in the summand in (27) are identical to those in Z , we get

K+(−) (|�x − �y|) |�x−�y|→∞−→ 1. (31)

The IR regulator, µ0, as well as the functions f (�z), can now be safely removed in (24).
Introducing the renormalized fields

ψR
1(2) = ψ1(2)|ε|− 5

8 , (32)

also the UV regulator ε may be removed in (24) and we, finally, obtain〈
ψ1(2)(�x)ψ

†
1(2)(�y)

〉
R

|�x−�y|→∞∼ +(−)i exp[+(−)i arg(�x − �y)]

|�x − �y| 5
4

, (33)
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which are the diagonal components of the Euclidean correlator corresponding to Klaiber’s
exact solution of the massless Thirring model [28].

4.2. Off-diagonal components

We now consider the off-diagonal, chirality nonconserving, components of the fermion
correlation function at β2 = 8π . From (20), we may write〈
ψ1(2)(�x)ψ

†
2(1)(�y)

〉 = lim
ε→0

lim
f (z)→1

lim
µ0→0

−(+)i[µ0|ε|] 5
4 [µ0|�x − �y|] 3

4 G+(−) (|�x − �y|) , (34)

where

G+(−)(|�x − �y|) = Z−1|�x − �y|−2
∞∑

n=0

F +(−)
n (|�x − �y|) (35)

evaluated at β2 = 8π .
Proceeding as before, we go back to the original coordinate system and express G+ as

G+(|�x − �y|) = Z−1|�x − �y|−2
∞∑

n=0

α(2n+1)

n!(n + 1)!

∫ n∏
i=1

(d2xif (�xi))

n+1∏
i=1

(d2yif (�yi))

×
∏n

i<j

[xi ,xj ]
|�x−�y|4

∏n+1
i<j

[yi ,yj ]
|�x−�y|4

|�x − �y|(4n+2)
∏n

i

∏n+1
j

[xi ,yj ]
|�x−�y|4

( ∏n
i

[xi ,x]
|�x−�y|4

∏n
i

[xi ,y]
|�x−�y|4∏n+1

i
[yi ,x]
|�x−�y|4

∏n+1
i

[yi ,y]
|�x−�y|4

) 1
2

× exp

{
i

n∑
i=1

[arg(�xi − �y)− arg(�xi − �x)] − i
n+1∑
i=1

[arg(�yi − �y)− arg(�yi − �x)]

}
.

(36)

G−, accordingly, may be obtained from (36) by just performing the exchange xi(j) ↔ yi(j)

and reversing the sign of the phases.
By inspecting (36), we immediately see that the |�x − �y|-factors completely cancel out

and we conclude that G+(−) are dimensionless as they should. Counting the µ0-factors in
the above expression we also see that there is an overall µ−2

0 . Thus, inserting this result
in (34), we conclude that the regulating mass (IR regulator) µ0 completely disappears from
the off-diagonal components of the fermion correlator. As we shall see below, however, this
situation is modified when we consider the asymptotic behaviour of these functions.

We may now analyse the asymptotic large distance behaviour of the off-diagonal
components of the fermion correlator, (34). As we saw in the case of (27), the phases
in (36) will vanish in this limit. Taking this fact into account and shifting the integration
variables as

�xi → �xi − �x, �yi → �yi − �x, (37)

we can see from (36) that

G+(|�x − �y|) |�x−�y|→∞∼ −Z−1
∞∑

n=0

α(2n+1)

n!(n + 1)!

∫ n∏
i=1

(d2xi f (�xi))

n+1∏
i=1

(d2yi f (�yi))

×
∏n

i<j [xi, xj ]
∏n+1

i<j [yi, yj ]∏n
i

∏n+1
j [xi, yj ]

( ∏n
i [xi, 0]∏n+1

i [yi, 0]

) 1
2
( ∏n

i [xi, y − x]∏n+1
i [yi, y − x]

) 1
2

. (38)
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In the large distance regime, again, we must rewrite the last factor in the above expression
in a form analogous to (28), in terms of the fully regulated Green’s function, namely

exp

{
−(+)2

[
n∑

i=1

K0
[
µ0(|�xi − (�y − �x)|2 + |ε|2) 1

2
]−

n+1∑
i=1

K0
[
µ0(|�yi − (�y − �x)|2 + |ε|2) 1

2
]]}

.

(39)

Using, as before, the fact that K0(x)
x→∞−→ 0, we conclude that the above expression tends to 1

for |�y − �x| → ∞. Counting the µ0-factors in the remaining terms of (38), taking into account
(9) and (26), we find that they completely cancel out. Therefore, inserting this result in (34)
and renormalizing the fields as in (32), we get〈

ψ1(2)(�x)ψ
†
2(1)(�y)

〉
R

|�x−�y|→∞∼ lim
ε→0

lim
f (z)→1

lim
µ0→0

− (+)iµ2
0|�x − �y| 3

4 κ(ε)+(−), (40)

where κ(ε)+ is given by (38), after removing the last factor (note that this is independent
of µ0).

Using Coleman’s prescription that the mass (IR) regulator should be eliminated first [5],
we finally get 〈

ψ1(2)(�x)ψ
†
2(1)(�y)

〉
R

|�x−�y|→∞−→ 0, (41)

which coincides with the result for the off-diagonal components of the fermion correlator in
the massless Thirring model. These components of the correlator vanish, in that case, because
of chirality conservation that exists in a massless fermionic theory.

We can understand physically, in terms of the CG picture, the reason why the off-diagonal
correlators vanish in the large distance regime. The neutrality of the gas is responsible for the
complete cancellation of the IR regulator µ0. In the case of the diagonal components, two
external charges of opposite sign are introduced for the description of the correlation function.
In the large distance regime, the external charges are removed to infinity and decouple from the
gas, since the fully regulated 2D Coulomb interaction vanishes at large distances. Removing
these charges to infinity leaves a gas that remains neutral. The µ0-factors are totally cancelled
out and the correlators are finite, as we can see from (33). Conversely, for the off-diagonal
components, two external charges of the same sign are introduced in the system. These,
together with the gas charges, form a neutral system. When we remove the external charges
to infinity, for describing the large distance regime of the correlator, a non-neutral gas is left
after the decoupling of these charges. Then, the IR regulator µ0 no longer cancels out and
forces the correlation functions to vanish for µ0 → 0.

These results clearly expose the fact that the mass term of the MTM becomes irrelevant
at β2 = 8π .

5. Concluding remarks

We would like to comment on the prescription adopted concerning the regulators. When
studying the asymptotic behaviour of the correlation functions, we always take the limit
|�x − �y| → ∞ firstly. Then, following [5], we take the regulators out in the order: (1) µ0 → 0;
(2) f (�z) → 1 and (3) ε → 0. This leads, as we have seen, to the correct asymptotic limit
of the massive fermion correlators. For finite |�x − �y|, conversely, we have shown that the
µ0 regulator completely cancels out and the limit µ0 → 0 can be taken safely. Nevertheless,
when removing the UV regulator ε, we must be careful because of the singularities that will
appear due to the short-distance Coulomb interaction of point charges. This has been studied
in detail for 4π � β2 < 8π and it was shown that the singularities that appear at multipole
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thresholds may be absorbed by a subtractive renormalization of the ground-state energy [32].
Nevertheless, the conjectured existence of a sequence of phase transitions coinciding with
these multipole thresholds in the region 4π � β2 < 8π [33, 34], has been later on denied
[35, 20]. For β2 � 8π , however, the UV problem becomes extremely complicated and, as far
as we know, remains unsolved. Consequently, only the large distance regime (|�x − �y| → ∞)

of the MTM, which has been studied here, can be considered sensible in this region of the
coupling β.
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